Handbuch

Thermo-Holz Terrassenbeläge

Inhaltsverzeichnis

Kapitel	Seite
1. Vorwort	1
2. Verarbeitungsrichtlinien	2
3. Veränderung von Holz im Freien	4
4. Einbauvorschläge	5
5. Befestigungsvarianten	
Sichtbare Befestigungsvariante	6
Nicht sichtbare Befestigungsvariante	7
6. Technische Zeichnungen Terrassenaufbau	8
7. Terrassenöl	9
8. Physikalische Eigenschaften: Beispiel Thermo-Esche	10
9. Resistenz / Thermo-Esche	11
10. Resistenz / Thermo-Walnuss	12
11. Resistenz / Thermo-Fichte	13
12. Resistenz / Thermo-Kiefer	14
13. Energiebilanz Terrassenbeläge	15

1. Vorwort

Thermisch modifiziertes Holz (sog. Thermo-Holz) soll unbehandeltem Holz gegenüber Vorteile hinsichtlich Dimensionsstabilität, Fäulnisresistenz, und Schieferbildung aufweisen. Falls die Thermo-Behandlung mit unzureichender Technologie und/oder Mangel an Prozesskenntnis durchgeführt wird, werden sich diese Vorteile höchstwahrscheinlich nicht einstellen, das Holz wird im Gegenteil dauerhaft verschlechtert.

Brenstol verwendet zur Herstellung von Thermo-Holz Terrassendielen das bewährte Wasserdampf-Hitze-Verfahren, das in Finnland zur industriellen Reife entwickelt worden ist. Es werden derzeit (Stand 2015) vier Thermokammern mit einer Gesamtkapazität von 40.000 m³ betrieben, die in den Aspekten Steuerung, Dampf- und Ventilatorleistung, und Rückbefeuchtung nach den Vorgaben Brenstols vom finnischen Hersteller Jartek gebaut wurden. Die Anlagen sind in der Lage, den Feuchtigkeitsgehalt des Holzes zu Beginn der Thermobehandlung mittels Sensoren zu erfassen und während des gesamten Prozesses möglichst gleiche Bedingungen hinsichtlich Temperatur- und Feuchtigkeitsniveau in der Kammer zu schaffen. Dies ermöglicht gleich bleibende Qualitäten von Charge zu Charge, sowie innerhalb einer Charge. Die Messinstrumente in der Kammer helfen dem Anlagenbetreiber die Prozessparameter Zeitpunkt, Zeitdauer, Temperatur und Feuchtigkeit zu steuern.

Ein essentieller Bearbeitungsschritt ist die Trocknung auf 0% Holzfeuchte und die anschließende Temperaturanhebung und Thermobehandlung bei bis zu 215°C. Falsche Entscheidungen seitens des Prozessbetreibers hinsichtlich Zeitpunkt/-dauer von Temperaturerhöhung bzw. -senkung sowie Feuchtigkeitszugabe in Form von Dampf können zu unwiederbringlicher Schädigung des Holzes führen, die sich durch Rissbildung, Sprödigkeit, oder starke Farbunterschiede direkt nach der Entnahme der Ware aus der Thermokammer zeigt.

Einer der wichtigsten Schritte bei der Herstellung thermisch modifizierten Holzes erfolgt gegen Ende des Prozesses. Durch die Thermo-Behandlung sinkt die Ausgleichsfeuchte des Holzes ab. Es ist allerdings notwendig, das Feuchtigkeitsniveau des Holzes am Ende des Prozesses auf das Niveau der Ausgleichsfeuchte anzuheben. Hier bildet die Kenntnis des Prozesses seitens des Prozessbetreibers den entscheidenden Einflussfaktor. Dieser entscheidet, wann über welchen Zeitraum bei welchem Temperaturniveau welche Dampfmenge zugegeben wird, um am Ende ein homogenes, nicht sprödes Thermo-Holz zu erhalten. Falls dieser Rückbefeuchtungsprozess nicht oder fehlerhaft ausgeführt wird, können bereits in der Thermokammer durchgehende Risse auftreten bzw. erfolgt die Rissbildung bei der späteren Lagerung. Zutage treten solche Risse meist erst nach dem Hobeln. Dort werden solche Dielen im Zuge der Qualitätskontrolle ausgekappt oder aussortiert. Gelangen solche Dielen in den Verkauf, muss direkt bei Installation auf derartige Sortierfehler geachtet werden.

Die Thermobehandlung zielt zum einen darauf ab, die Dauerhaftigkeit des Holzes zu erhöhen; zum anderen soll die erhöhte Dimensionsstabilität die Bildung gefährlicher Abschieferungen vermindern. Beide Aspekte sind in der Praxis nur zu erreichen, wenn der konstruktive Holzschutz beachtet wird. Montagen in Staunässe bzw. Holz auf Holz führen zu vorzeitigem Versagen auch thermisch behandelten Holzes. Wird mit Holzdielen mit stirnseitiger Nut/Feder gearbeitet (Holz auf Holz!), muss hier zwingend vor Installation ein 2-facher Hirnholzschutz angebracht werden, der die Feuchtigkeitsaufnahme und den Verbleib der Feuchtigkeit vermindert.

Für sämtliche Konstruktionen mit Thermoholz müssen die lokalen Begebenheiten und die gängigen Bauvorschriften vor Ort berücksichtigt werden.

2. Verarbeitungsrichtlinien

Werden Thermory Terrassenbeläge mit anderen Befestigungsmitteln und mit anderen Unterkonstruktionsmaterialien verbaut als von Swero ausdrücklich freigegeben, wird keine Haftung für die Funktion des Systemaufbaus gegeben. Darüber hinaus geben wir folgende Vorgaben:

a) Auflagepunkte

Bei der Verlegung ist darauf zu achten, dass die Auflagepunkte (Unterkonstruktion) nicht weiter als 40cm (lichtes Maß 35cm) auseinander liegen.

b) Fugenabstand

Je höher die Dichte einer thermisch behandelten Holzart, desto höher ist ihre Fähigkeit, Wasser aufzunehmen. Entsprechend stärker ist der Aufquellvorgang nach der Verlegung im Außenbereich. Ein Mindestabstand zwischen den Dielen ist daher unbedingt einzuhalten, um Spannungsrisse zu minimieren. Folgende Faustregeln gelten hier je Holzart:

- 1) Thermo-Fichte/Kiefer: Dielenbreite in mm geteilt durch 40
- Thermo-Esche/Walnuss: Dielenbreite in mm geteilt durch 18

Bspl.:

Je nach Unterlüftung und Standort kann eine Thermo-Esche nach der Installation bis zu 4% in der Breite aufquellen. Falls die Bedingungen am Standort ein maximales Aufquellen befördern, muss ein maximaler Fugenabstand gewählt werden. Eine Dielenbreite von 150 mm würde also einen Fugenabstand von 8,3 mm erfordern (150:18). Damit kann die Diele 6 mm aufquellen. Dieser Fugenabstand kann durch den Einsatz kluger Befestigungssysteme verringert werden.

c) Unterlüftung

Grundsätzlich muss bei der Verlegung der Kontakt Holz auf Holz vermieden werden. Hierzu empfehlen wir entsprechende Abstandshalter von mindestens 5mm Höhe. Der Unterbau muss darüber hinaus sicherstellen, dass keine Staunässe entstehen kann. Die Mindestaufbauhöhe zwischen Untergrund und Deckbelag sollte 10cm nicht unterschreiten. Dielen die mit stirnseitiger Nut/Feder-Verbindung verlegt werden, müssen vorab 2-fach mit Hirnholzschutz behandelt werden.

d) Befestigungsmaterialien

Zur Verschraubung müssen ausschließlich Schrauben und andere Befestigungsmaterialien aus Edelstahl verwendet werden. Nicht rostfreie Metalle können bei Holz im Außenbereich (aufgrund der Verwitterung) dunkle Flecken verursachen. Bei jeder Verschraubung des Holzes müssen die Löcher in der Terrassendiele (nicht in der Unterkonstruktion) mit der Lochgröße des Schraubendurchmessers+1,0mm (Bsp. 4,0x40mm Schraube → 5,0mm Bohrloch) vorgebohrt werden. Der Schraubenkopfkonus muss ebenfalls angesenkt werden. Wir empfehlen die Verwendung eines Tiefenanschlages. Es muss darauf geachtet werden, dass die Ansenkung mit der Größe des Schraubenkopfes übereinstimmt. Das Vorbohren der Löcher gilt für jede Art von Schrauben. Es ist darauf zu achten, dass die Schrauben nach der Befestigung ein so genanntes "ARBEITEN" der Terrassendiele zulassen. Mindestschraubabstand seitlich 20mm, Mindestschraubabstand stirnseitig 40mm.

e) Lagerung:

Vor dem Einbau ist zwingend darauf zu achten, dass die Thermo-Holz Terrassendielen ca. 72Std. unter UV-Schutzfolie abgedeckt am Einbauort im Außenbereich (nicht lagernd in der Garage) gelagert werden. Die richtige Ausgleichsfeuchte für den Außenbereich wird dadurch angenommen.

3. Veränderungen von (Thermo-)Holz im Freien

Im Freien eingebautes Holz unterliegt – vereinfacht betrachtet – zwei prägenden Einflüssen:

Ultraviolettem Licht und Wasser

Allgemein:

Das UV-Licht spaltet in einem photolytischen Prozess eine Substanz namens Lignin. Lignin hat die Funktion, Zellulosefasern im Holz wie Klebstoff zusammenzuhalten. Lignin wird bei der Spaltung wasserlöslich. Es kann daher von Feuchtigkeit angelöst und bei Schlagregen ausgeschwemmt werden. Zurück bleiben weißliche Zellulosefasern auf denen Mikroorganismen siedeln, die das silbergraue Erscheinungsbild komplettieren. Die nicht mehr gebundenen Zellulosefasern erodieren im Laufe der Zeit. Dabei entsteht eine reliefartige, die Holzmaserung betonende Oberflächenstruktur. Bei schattigen Lagen bilden sich oft Bläue und Schimmel, besonders in der Nähe von Vegetation. Auch das kann zu Graufärbungen führen, in den hier betrachteten Anwendungen jedoch nicht zu Schädigungen. Sehr prägend ist der stete Wechsel von Durchfeuchtung und Austrocknung. Schlagregen und Tauwasser werden von unbehandeltem Holz durch Kapillarwirkung aufgenommen. Dabei quillt das Holz. Kommt es danach durch Wind und Sonne wieder zur Trocknung, schwindet der Querschnitt zurück. Dieser Vorgang wiederholt sich. Das führt zu Rissen in der Oberfläche und Verformungen des Holzes, die je nach Beschaffenheit und Oualität im Mikrobereich bleiben oder auch stärker ausfallen können.

Farbe:

UV-Licht und Wasser haben die gleichen Auswirkungen auf Thermo-Holz. Die Vergrauung ist im gleichen Maße vorhanden und kann nur durch das Auftragen von Außenölen wie bei allen anderen Holzarten auch verzögert werden. Die Vergrauung des Holzes hat keine Auswirkung auf die Haltbarkeit. Um die Farbgebung des Holzes länger zu erhalten, empfehlen wir, das Holz nach der Verlegung mindestens einmal jährlich zu ölen. Zusätzlich verschließt das Öl die Poren des Holzes, damit sich Verschmutzungen nicht sofort festsetzen können, was die Reinigung im Nachhinein erleichtert. Empfehlen können wir hier die Terrassenöle siehe Seite 9. Mit diesen Ölen haben wir bisher sehr gute Erfahrungen bzgl. verlangsamter Vergrauung und der Nachbehandlung gemacht.

Resistenz gegenüber Holz zerstörenden Pilzen:

Unsere Thermo-Esche sowie die Thermo-Walnuss mit der 215°C Behandlung haben in Laboruntersuchungen eine eindeutige **Resistenzklasse 1** erzielt. Auch die Thermo-Fichte schafft im Durchschnitt eine Resistenzklasse 1, allerdings muss man hier deutliche Streuungen in Resistenzklasse 2, 3 oder 4 verzeichnen. Unsere Thermo-Kiefer liegt durchschnittlich in der Resistenzklasse 2, mit etwas geringeren Streuungen als die Th-Fichte. Thermoholz ist aus Sicht der Dauerhaftigkeit daher eine überzeugende Alternative zu Tropenhölzern und Holz/Kunststoff-Verbundstoffen. Es trägt zur Schonung der Tropenwälder bei und vermeidet die energieintensive Kunststoffgewinnung und die problematische Kunststoffentsorgung.

Risse:

Man kann 4 Arten von Rissen unterscheiden:

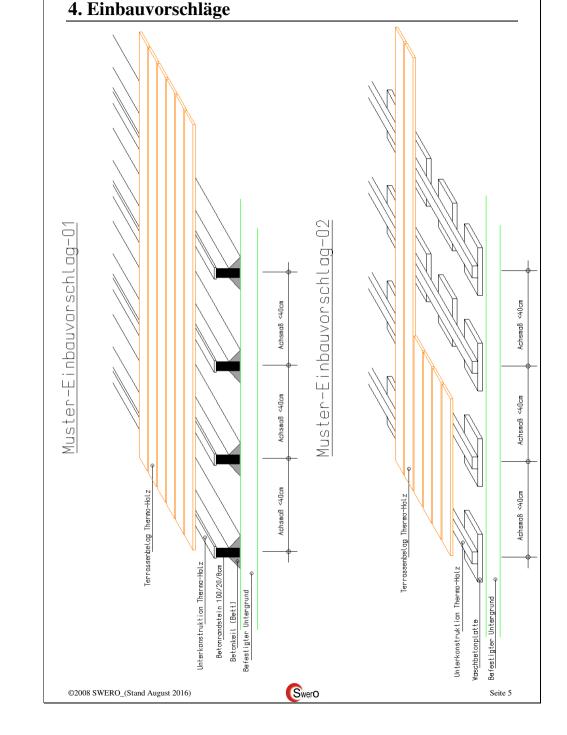
1. Trocknungsrisse

Als Gründe für Trocknungsrisse sind beim Thermoholz in erster Linie Fehler bei der Vortrocknung anzuführen. Befinden sich vor der Hochtemperaturphase noch Feuchtigkeitsnester im Holz, führen die hohen Temperaturen zu Schädigungen des Holzes durch das verdampfende Wasser. Normalerweise werden solche Risse direkt bei der Hobelung sichtbar und die entsprechenden Stellen werden ausgekappt. Werden solche Dielen installiert kann es zu Brüchen in Längsrichtung kommen.

2. Spannungsrisse

Spannungsrisse treten zu einem bestimmten Teil wuchsbedingt auf. Eine Kombination aus schlechter Unterlüftung, starrer Befestigung, und labilem Untergrund bewirkt ein konstruktionsbedingtes Auftreten von Spannungsrissen.

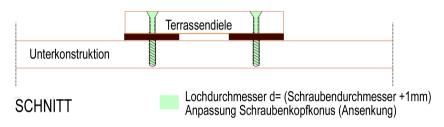
Oberflächen-Haarrisse

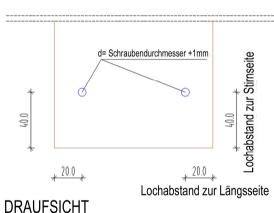

Oberflächenhaarrisse sind im Prinzip unvermeidlich. Die Oberfläche einer korrekt installierten Diele weist immer ein stärkeres Quellen und Schwinden auf als der Kern der Diele. Oberflächenhaarrisse treten beim Schwinden der Diele auf, und treten wuchsbedingt bei bestimmten Dielen stärker und anderen Dielen schwächer oder gar nicht auf. Regelmäßiges Ölen kann das Auftreten von Oberflächen-Haarrissen minimieren.

4. Endrisse

Die Kapillarwirkung ist an den Stirnseiten einer Holzdiele stärker als an den Flächen. Die Folge sind Endrissbildungen, welche lediglich durch ein Stirnkantenwachs minimiert werden können. Speziell bei Dielen mit stirnseitiger Nut/Feder trägt der Hirnholzschutz auch zur Lebensdauer der Terrassendiele bei und ist daher zwingend erforderlich.

Farbunterschiede, Verzug, und Formstabilität:


Farbunterschiede der einzelnen Terrassendielen können auftreten und hängen mit den verschiedenen Wuchsgebieten des Holzes zusammen. Der Verzug bzw. das Arbeiten von Thermoholz ist um ein vielfaches geringer als bei herkömmlichen Holzarten. Ein geringes Arbeiten kann jedoch nie ausgeschlossen werden und ist auch abhängig von den Voraussetzungen vor Ort (Unterlüftung, Ausrichtung, Aufbauhöhe...). Die Formstabilität (Quellen & Schwinden) ist bei Thermoholz deutlich besser gegenüber unbehandelten Hölzern, jedoch auch abhängig vom Ausgangsrohstoff und Wuchs, von Einschlüssen und Ästen.



5. Befestigungsvarianten

<u>Sichtbare Befestigungsvariante mit Edelstahl</u> <u>Terrassenschrauben:</u>

Bohrlochtabelle (für Terrassendiele)							
Schraubendurchmesser	Bohrloch						
3,0mm 3,5mm 4,0mm 4,5mm	4,0mm 4,5mm 5,0mm 5,5mm						

Nichtsichtbare Befestigungsvarianten:

Wir empfehlen bei Dielen mit seitlicher Nutung folgenden Clip:

Swero A2/Edelstahlclip

Kontakt:

SWERO GmbH & CO. KG Hiltensweiler 4/2 D-88239 Wangen

Telefon: 07528 / 975388

www.swero.de

Dieser Clip muss aus Gründen des konstruktiven Holzschutzes auf einem Abstandhalter von mindestens 4 mm Höhe installiert werden.

Gecko/Kunststoff- Edelstahlclip

Kontakt:

SWERO GmbH & CO. KG Hiltensweiler 4/2 D-88239 Wangen

Telefon: 07528 / 975388

www.swero.de

Wir empfehlen bei Dielen mit seitlicher Hohlkehle:

SenoFix/EPDM- Edelstahl

Kontakt:

SWERO GmbH & CO. KG Hiltensweiler 4/2 D-88239 Wangen

Telefon: 07528 / 975388

www.swero.de

Teni®-Verlegeclip

Kontakt: SWERO GmbH & CO. KG Hiltensweiler 4/2 D-88239 Wangen

Telefon: 07528 / 975388

www.swero.de

©2008 SWERO_(Stand August 2016) Seite 6 ©2008 SWERO_(Stand August 2016) SwerO Seite 7

6. Technische Zeichnungen Terrassenaufbau **Idealer Terrassenaufbau (horizontal):** Dielenabstand = Dielenbreite/18 umseitiae Hinterlüftuna min. 2cm Hinterlüftung 4-5mm zw. Terrassendiele und UK WW Unterkonstruktionsriege zirkulierende Hinterlüftung Feuchtigkeitssperre zw. UK und Fundament ≥10cm Betonrandstein Befestigter Untergrund (wasserdurchlässig Idealer Terrassenaufbau (vertikal): Achsabstand <=40cm Achsabstand <=40cm Achsabstand <=40cm umseitige lichtes Maß max. 35cm lichtes Maß max, 35cm Hinterlüftung lichtes Maß max. 35cm 2-facher Hirnholzschutz min. 2cm bei der Nut- und Federverbindung anbringen. Hinterlüftung 4-5mm zw. Terrassendiele und UK zirkulierende Hinterlüftung - Unterkonstruktions-Feuchtiakeitssperre >10cm zw. UK und Fundament Befestigter Untergrund (wasserdurchlässig) 0.0 Überstand und stumpfer Stoss: Stumpfe Dielenstöße werden mit doppelt verlegter Unterkonstruktion ausgebildet. max. 3cm Überstand (stirnseitig) max. 1cm Überstand (in Längsrichtung) 5mm Luft bei stumpfem Terrassendielen Stoss ©2008 SWERO (Stand August 2016) Seite 8

7. Terrassenöl

Thermory Thermoholzöl - dunkel:

Kontakt:

SWERO GmbH & CO. KG Hiltensweiler 4/2 D-88239 Wangen

Telefon: 07528 / 975388

www.swero.de

Dieses Öl wird in der Regel für Thermo-Esche und Thermo-Walnuss verwendet.

Thermory Thermoholzöl - hell:

Kontakt:

SWERO GmbH & CO. KG Hiltensweiler 4/2 D-88239 Wangen

Telefon: 07528 / 975388

www.swero.de

Dieses Öl wird in der Regel für Thermo-Kiefer und Thermo-Fichte verwendet.

Stirnkantenwachs:

Kontakt:

SWERO GmbH & CO. KG Hiltensweiler 4/2 D-88239 Wangen

Telefon: 07528 / 975388

www.swero.de

Das Stirnkantenwachs empfiehlt sich für sämtliche rechtwinklig gekappten Schnittstellen. Werden Schnittstellen stumpf aufeinander gestoßen oder wird mit stirnseitig Nut/Feder gearbeitet, ist die Verwendung des Wachses verpflichtend.

8. Physikalische Eigenschaften: Beispiel Thermo-Esche

TESTBERICHT

Nr. 239 2007-07-05

Produktbeschreibung: Hitzebehandeltes (215 °C) Eschenholz 20x135x1000 mm

Grund für Test: Auftrag für den Test 2007-05-22

Testziel: Bestimmung von physikalischen und mechanischen

Eigenschaften der Terrassendielen

Testmethoden.

Der Feuchtegehalt der Musterstücke wurde in einem Darrofen bei einer Temperatur von 103 - 105°C bis zum Erreichen einer konstanten Masse ermittelt.

Dichte, Biegefestigkeit und Oberflächenhärte wurden bei einer Ausgleichsfeuchte von 4.6% im Labor ermittelt.

Für die Ermittlung der sich einstellenden Ausgleichsfeuchte im Außenbereich wurden die Musterstücke bis zum Erreichen einer konstanten Masse einer relativen Luftfeuchtigkeit von

85% ausgesetzt.

Die Oberflächenhärte (Brinellhärte), wurde anhand der EN 1534 mit der Anwendung eines Prüfstempels (10mm Durchmesser) ermittelt.

Testergebnisse.

Feuchtegehalt bei (normalen) Laborbedingungen

Muster Nr.	1	2	3	4	5	6	Durchschnitt
Feuchtgehalt, %	4,4	4,7	4,7	4,5	4,7	4,7	4,6

Muster Nr.	1	2 3		4	5	6	Durchschnitt	
Dichte, kg/m ³	597	598	582	580	608	575	590	

Ausgleichsfeuchte bei durchschnittlichen Außenbedingungen

Muster Nr.	1	2	3	4	5	6	Durchschnitt
Feuchtegehalt, %	7,7	8,0	7,9	7,8	7,9	8,1	7,9

Riegefestigkeit

z iegejestighen						
Muster Nr.	1	2	3	4	5	
Biegefestigkeit, N/mm ²	110,0	102,3	89.2	100,4	83,5	Durchschnitt
Muster Nr.	6	7	8	9	10	
Biegefestigkeit, N/mm ²	82,1	112,0	94,4	99,0	93,1	96,6

Oberflächenhärte (Brinellhärte)

Nr.	d1	d2	d	HB (N/mm ²)
1-20	4,9 - 7,3	5,1-7,6	5,00 - 7,45	19,1 – 47,5
	29,4			

9. Resistenz / Thermo-Esche

PRÜFBERICHT-NR. 85963/1 vom 17.03.2008

Datum des Probeneingangs: 08.10.2007 BRENSTOL OÜ Beginn des Tests: 09.11.2007 PETERBURI TEE 44 Veröffentlichung des Ergebnisses: 17.03.2008 11415 TALLINN Bezeichnung der Probe: Terrassendielen aus **ESTLAND** Thermo-Esche 215 °C KONTAKT: Herr Meelis Kajandu

Technischer Bericht

Bestimmung der natürlichen Dauerhaftigkeit von Vollholz gegen Holz zerstörende Basidiomyceten.

nach CEN/TS 15083-1/2005, bis auf die Auswahl und Testmethode:

Vorbereitung der Proben, die vom Kunden bereitgestellt

worden sind.

Testmaterial: Hitze behandeltes Eschenholz Vergleichsholz: Rotbuche (Fagus Sylvatica)

Testpilze: Brauner Kellerschwamm (Coniophora puteana DSM 3085)

Schmetterlingsporling (Coriolus versicolor DSM 3086)

Alterungsverfahren: nein

Sterilisation: Gamma-Bestrahlung

Datum des Einwirkungsbeginns: 09.11.2007

Datum des Einwirkungsendes: 10.03.2008, 4 Monate

Testergebnisse

Durchschnittlicher Massenverlust des Vergleichsholzes:

Mit Coniophora puteana: 33% Mit Coriolus versicolor: 30%

Test gültig

Holzfeuchte des Testmaterials nach Pilzeinwirkung:

Mit Coniophora puteana: Ø 18%, min 9%, max 24% Mit Coriolus versicolor: Ø 31%, min 16%, max 57%

Mittelwert des Massenverlustes des Testmaterials:

Mit Coniophora puteana: 1% Mit Coriolus versicolor: 1.4%

Medianwert des Massenverlustes des Testmaterials:

Mit Coniophora puteana: 1% 1% Mit Coriolus versicolor:

Einstweilige Dauerhaftigkeit nach CEN/TS 15083-1/2005, Annex D: Klasse 1 – sehr dauerhaft – Medianwert des Massenverlustes ≤ 5%

Bemerkung: Die Testmethode wurde auf behandeltes Vollholz angewandt.

Geschäftsführer Institutsleiter Dott. Franco Bulian Dott. Andrea Giavon

Swero Swero ©2008 SWERO (Stand August 2016) ©2008 SWERO (Stand August 2016) Seite 10 Seite 11

10. Resistenz / Thermo-Walnuss

PRÜFBERICHT-NR. 112556/1 vom 24.06.2010

Datum des Probeneingangs:21.01.2010BRENSTOL OÜBeginn des Tests:01.02.2010PETERBURI TEE 44Veröffentlichung des Ergebnisses:24.06.201011415 TALLINNBezeichnung der Probe:Terrassendielen ausESTLANDThermo-Hickory 215 °CKONTAKT: Herr Meelis Kajandu

Technischer Bericht

Bestimmung der natürlichen Dauerhaftigkeit von Vollholz gegen Holz zerstörende Basidiomyceten.

Testmethode: nach CEN/TS 15083-1/2005, bis auf die Auswahl und

Vorbereitung der Proben, die vom Kunden bereitgestellt

worden sind.

Testmaterial: Hitze behandeltes Hickory Vergleichsholz: Rotbuche (Fagus Sylvatica)

Testpilze: Brauner Kellerschwamm (Coniophora puteana DSM 3085)

Schmetterlingsporling (Coriolus versicolor DSM 3086)

Alterungsverfahren: nein

Sterilisation: Gamma-Bestrahlung

Datum des Einwirkungsbeginns: 01.03.2010

Datum des Einwirkungsendes: 22.06.2010, 4 Monate

Testergebnisse

Durchschnittlicher Massenverlust des Vergleichsholzes:

Mit Coniophora puteana: 37% Mit Coriolus versicolor: 30%

Test gültig

Holzfeuchte des Testmaterials nach Pilzeinwirkung:

Mit Coniophora puteana: Ø 25%, min 9%, max 49%
Mit Coriolus versicolor: Ø 20%, min 10%, max 32%

Mittelwert des Massenverlustes des Testmaterials:

Mit Coniophora puteana: 1,2% Mit Coriolus versicolor: 0,4%

Medianwert des Massenverlustes des Testmaterials:

Mit Coniophora puteana: 0,6% Mit Coriolus versicolor: 0,4%

Dauerhaftigkeit nach CEN/TS 15083-1/2005, Annex D:

Klasse 1 – sehr dauerhaft – Medianwert des Massenverlustes ≤ 5%

Bemerkung: Die Testmethode wurde auf behandeltes Vollholz angewandt.

Institutsleiter Geschäftsführer
Dott. Franco Bulian Dott. Andrea Giavon

11. Resistenz / Thermo-Fichte

PRÜFBERICHT-NR. 132648 / 1 vom 06.03.2012

Datum des Probeneingangs:29.09.2011BRENSTOL OÜBeginn des Tests:29.09.2011PETERBURI TEE 44Veröffentlichung des Ergebnisses:06.03.201211415 TALLINN

Bezeichnung der Probe: Nordische Fichte Behandlungs- ESTLAND

Temperatur 215°C (Th-Fichte)

Technischer Bericht

Bestimmung der natürlichen Dauerhaftigkeit von Vollholz gegen Holz zerstörende Basidiomyceten.

Testmethode: nach CEN/TS 15083-1/2005, bis auf die Auswahl und

Vorbereitung der Proben, die vom Kunden bereitgestellt

worden sind.

Testmaterial: Hitzebehandelte nordische Fichte Vergleichsholz: Wald-Kiefer (Pinus sylvestris)
Testpilze: Coniophora puteana DSM 3085

Poria placenta DSM 3088

Alterungsverfahren: nein

Sterilisation: Gamma-Bestrahlung
Dauerhaftigkeitsklasse: 1 – sehr dauerhaft

Datum des Einwirkungsbeginns: 27.10.2011

Datum des Einwirkungsendes: 27.02.2012, 4 Monate

Testergebnisse

Durchschnittlicher Massenverlust des Vergleichsholzes:

Mit Coniophora puteana: 29,8% Mit Poria placenta: 20,3%

Test gültig

Holzfeuchte des Testmaterials nach Pilzeinwirkung:

Mit Coniophora puteana: Ø 21,4%, min 8,2%, max 56,6% Mit Poria placenta: Ø 29,0%, min 7,4%, max 88,3%

Medianwert des Massenverlustes des Testmaterials:

Mit Coniophora puteana: 2,9% Mit Poria placenta: 5,2%

Dauerhaftigkeit nach CEN/TS 15083-1/2005, Annex D:

Klasse 1 – sehr dauerhaft – Medianwert des Massenverlustes ≤ 5%

Bemerkung: Die Testmethode wurde auf behandeltes Vollholz angewandt.

Geschäftsführer Dott. Andrea Giavon

12. Resistenz / Thermo-Kiefer

PRÜFBERICHT-NR. 132647 / 1 vom 06.03.2012

Datum des Probeneingangs:29.09.2011BRENSTOL OÜBeginn des Tests:29.09.2011PETERBURI TEE 44Veröffentlichung des Ergebnisses:06.03.201211415 TALLINN

Bezeichnung der Probe: Nordische Kiefer Behandlungs- ESTLAND

Temperatur 215°C (Th-Kiefer)

Technischer Bericht

Bestimmung der natürlichen Dauerhaftigkeit von Vollholz gegen Holz zerstörende Basidiomyceten.

Testmethode: nach CEN/TS 15083-1/2005, bis auf die Auswahl und

Vorbereitung der Proben, die vom Kunden bereitgestellt

worden sind.

Testmaterial: Hitzebehandelte nordische Fichte Vergleichsholz: Wald-Kiefer (Pinus sylvestris) Testpilze: Coniophora puteana DSM 3085

Poria placenta DSM 3088

Alterungsverfahren: nein

Sterilisation: Gamma-Bestrahlung

Dauerhaftigkeitsklasse: 2 – dauerhaft Datum des Einwirkungsbeginns: 27.10.2011

Datum des Einwirkungsendes: 27.02.2012, 4 Monate

Testergebnisse

Durchschnittlicher Massenverlust des Vergleichsholzes:

Mit Coniophora puteana: 29,8% Mit Poria placenta: 20,3%

Test gültig

Holzfeuchte des Testmaterials nach Pilzeinwirkung:

Mit Coniophora puteana: Ø 33,7%, min 12,1%, max 96,4% Mit Poria placenta: Ø 26,5%, min 12,7%, max 39,9%

Medianwert des Massenverlustes des Testmaterials:

Mit Coniophora puteana: 5,9% Mit Poria placenta: 6,8%

Dauerhaftigkeit nach CEN/TS 15083-1/2005, Annex D:

Klasse 2 – dauerhaft – Medianwert des Massenverlustes >5% und ≤10%

Bemerkung: Die Testmethode wurde auf behandeltes Vollholz angewandt.

Geschäftsführer

Dott. Andrea Giavon

Swero

13. Energiebilanz Terrassenbeläge

Ranki ng	Holzart	Kumulierter Energieaufwa nd Schnittholz KD 15%	Ankunfi Ra	um	Energieverb rauch Transporte *)	Verarbeitung		Nutzung sdauer	ENERGIEVE RBRAUCH PRO JAHR
		kWh/kg	Schiff (km)	LKW (km)	kWh/kg	Beschreibung	kWh/kg	Jahre	kWh/kg
1	Ipe Südamerika	1,83	10.000	1.000	0,68	Hobelung	0,4	30	0,097
2	Robinie Mitteleuropa	1,83	0	1.000	0,36	Hobelung	0,4	25	0,104
3	Thermo-Esche Mitteleuropa	1,83	0	1.000	0,36	Thermobehandlung, Hobelung	1,00	30	0,106
4	Thermo-Esche Nordamerika	1,83	6.000	1.000	0,55	Thermobehandlung, Hobelung	1,00	30	0,113
5	Eiche Mitteleuropa	1,83	0	1.000	0,36	Hobelung	0,4	20	0,130
6	Thermo-Esche Osteuropa	1,83	0	3.000	1,08	Thermobehandlung, Hobelung	1,00	30	0,130
7	Eiche Nordamerika	1,83	6.000	1.000	0,55	Hobelung	0,4	20	0,139
8	WPC Mitteleuropa	2,50	0	1.000	0,36	Extruierung	1,7	30	0,152
9	Lärche Mitteleuropa	1,23	0	1.000	0,36	Hobelung	0,4	13	0,153
10	Douglasie Mitteleuropa	1,23	0	1.000	0,36	Hobelung	0,4	13	0,153
11	Bangkirai Indonesien	1,83	15.000	1.000	0,84	Hobelung	0,4	20	0,154
12	WPC Nordamerika	2,50	6.000	1.000	0,55	Extruierung	1,7	30	0,158
13	Eiche Osteuropa	1,83	0	3.000	1,08	Hobelung	0,4	20	0,166
14	Douglasie Nordamerika	1,23	6.000	1.000	0,55	Hobelung	0,4	13	0,168
15	Kiefer imprägn. Mitteleuropa	1,23	0	1.000	0,36	Imprägn., Hobelung	1,00	13	0,199
16	Kiefer imprägn. Osteuropa	1,23	0	3.000	1,08	Imprägn., Hobelung	1,00	13	0,255
17	Lärche Sibirien	1,23	0	6.000	2,16	Hobelung	0,4	13	0,292

*) Schiff 0,000032 kWh/kg*km; LKW 0,00036 kWh/kg*km

ANNAHMEN

- 1) Die Hölzer werden über ihre Nutzungsdauer nicht mit einem Anstrich versehen; würde die Betrachtung unter der Annahme eines bei Bedarf zu erneuernden Anstriches durchgeführt, würde sich die Thermo-Esche verbessern, da wegen reduzierten Quellens und Schwindens der Anstrich weniger häufig durchgeführt werden müsste.
- 2) Es wird davon ausgegangen, dass ein kg jeder Holzart ungefähr dieselbe Fläche im Aussenbereich abdeckt; dies ist in der Realität meistens nicht der Fall wegen unterschiedlicher Dichten der Holzarten; würde präzise zwischen schwereren und leichteren Hölzern unterschieden, würden sich die schwereren Hölzer energetisch wegen des erhöhten Transportaufwandes verschlechtern, die leichteren Hölzer würden sich verbessern.
- 3) Als LKW wurde ein moderner Sattelzug angenommen der EU-Normen des Jahres 2010 übertrifft. Man kann davon ausgehen dass LKW-Transporte ausserhalb des EU-Raumes mit deutlich höheren Verbräuchen belastet sind, auch wegen der mangelhaften Infrastruktur. Würde dies präzise bilanziert, wäre beispielsweise die Sibirische Lärche energetisch noch stärker belastet.
- 4) Für die imprägnierten Hölzer wurde der Aufwand für die Herstellung des Imprägniermittels nicht berücksichtigt; würde dies bilanziert, würden die imprägnierten Hölzer energetisch schlechter abschneiden.
- 5) Bei den WPC-Produkten wird ein Kunststoffanteil von 50% bilanziert. Der Holzanteil wird nicht berücksichtigt. Würde der in der Realität meist deutlich höhere Kunststoffanteil präzise bilanziert sowie auch der Holzanteil allokiert, würden die WPC energetisch schlechter abschneiden.
- 6) Bei allen Transporten wird der Transport eines Endproduktes unterstellt. In der Realität legen die meisten Tropenhölzer sowie die Hölzer aus Osteuropa und Russland den größten Teil ihres gesamten Transportes in grünem Zustand zurück, nordamerikanische und mitteleuropäische Hölzer meist in bereits getrocknetem Zustand. Dies kann bei den Energieaufwendungen für die Transporte zu Schwankungen bis zu 50% führen.

DATENBESCHAFFUNG:

©2008 SWERO (Stand August 2016)

Daten für die Bilanzierung des Energieaufwandes stammen aus der ProBas-Datenbank des Umweltbundesamtes und des Öko-Instituts, sowie aus vom Umweltbundesamt verifizierten Datenbanken der europäischen Kunststoffindustrie, bzw. wurden aus diesen Datenbeständen errechnet.

